Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury.
نویسندگان
چکیده
Previous studies have suggested that the heart may be capable of limited repair and regeneration in response to a focal injury, while other studies indicate that the mammalian heart has no regenerative capacity. To further explore this issue, we performed a series of superficial and transmural myocardial injuries in C57BL/6 and MRL/MpJ adult mice. At defined time intervals following the respective injury (days 3, 14, 30 and 60), we examined cardiac function using echocardiography, morphology, fluorescence-activated cell sorting for 5-bromo-2-deoxyuridine-positive cells and molecular signature using microarray analysis. We observed restoration of myocardial function in the superficial MRL cryoinjured heart and significantly less collagen deposition compared with the injured hearts of C57BL/6 mice. Following a severe transmural myocardial injury, the MRL mouse has increased survival and decreased ventricular remodeling compared with the C57BL/6 mouse but without evidence of complete regeneration. The cytoprotective program observed in the severely injured MRL heart is in part due to increased cellular proliferation, increased vasculogenesis, and decreased apoptosis that limits the extension of the injury. We conclude that MRL injured hearts have evidence of myocardial regeneration, in response to superficial injury, but the stabilized left ventricular function and improved survival observed in the MRL mouse following severe injury is not associated with complete myocardial regeneration.
منابع مشابه
Heart regeneration in adult MRL mice.
The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models...
متن کاملEnhanced Functional Recovery in MRL/MpJ Mice after Spinal Cord Dorsal Hemisection
Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal h...
متن کاملHippocampus-dependent learning is associated with adult neurogenesis in MRL/MpJ mice.
The hippocampus is involved in declarative memory and produces new neurons throughout adulthood. Numerous experiments have been aimed at testing the possibility that adult neurogenesis is required for learning and memory. However, progress has been encumbered by the fact that abating adult neurogenesis usually affects other biological processes, confounding the interpretation of such experiment...
متن کاملO12: The Heart and the Brain: Stroke Induced Heart Damage
Cardiac diseases are common post-stroke and are associated with increased morbidity and mortality. One possible mechanism of acute cardiac injury is the neurogenic myocardial damage, where the cerebral injury is disturbing the normal sympathetic and parasympathetic neuronal outflow to the heart leading to cardiac damage including myocardial infarctions. The exact mechanism is not completely und...
متن کاملMRL/MpJ-Fas(lpr) mice show abnormalities in ovarian function and morphology with the progression of autoimmune disease.
The immune system is known to affect reproductive function, and maternal-fetal immune tolerance is essential for a successful pregnancy. To investigate the relationship between autoimmune disease and female reproductive function, we performed a comparative analysis of the ovarian phenotypes for C57BL/6 mice, autoimmune disease-prone MRL/MpJ (MRL/+) mice and congenic MRL/MpJ-Fas(lpr) (MRL/lpr) m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2007